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Abstract 
 

 
This study examines the spillover effects of negative carbon credits (CORC) on global financial 
and energy markets, an area with limited prior research. Negative carbon credits, distinct from 
traditional credits, aim to directly remove atmospheric carbon dioxide, playing a pivotal role in 
achieving net-zero emissions targets. Using monthly data across nine markets—including CORC, 
European Union Allowance Futures (EUAF), energy, and stock indices—over a 40-month period, 
this study employs the BEKK-GARCH model to capture dynamic volatility and spillover 
relationships. Results reveal that the CORC market operates with a high degree of independence, 
with its volatility predominantly self-driven. However, the European Union carbon market (EUAF) 
exerts a consistent and significant positive spillover effect, highlighting its critical influence. In 
contrast, the energy market (SPEN) exhibits negative short-term spillover effects on CORC, while 
traditional stock markets show negligible interactions. The findings underscore the specialized role 
of CORC within financial markets and its emerging interconnectivity with carbon trading systems, 
offering valuable insights for policymakers and investors aiming to enhance carbon market 
mechanisms and promote global decarbonization efforts. 
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1. Introduction 

 
In order to achieve the 1.5-degree target outlined in Paris Agreement, the implementation of carbon 
removal projects is also an argument mentioned (Smith et al., 2016), (O. Geden et al., 2018), (A. 
Buylova et al., 2021). In 2024, a carbon removal report compiled by European and American 
scientific research institutions was released, mainly covering the latest progress in carbon removal 
(CDR) technology and its role in addressing climate change. It affirms the necessity of carbon 
removal and emphasizes the importance of the voluntary carbon market. The article mentions that 
Canada supports natural climate solutions through the "2 Billion Trees Program" and the 
"Agricultural Climate Solutions Program" in its "Green Climate Solutions Fund". These projects 
aim to enhance carbon sequestration capacity through afforestation, wetland restoration, etc. China 
pledged in its Nationally Determined Contribution (NDC) to increase forest stocks by 600 million 
cubic meters and incorporate "carbon sink trading" into the national carbon emissions trading 
market. The U.S. Department of Energy also received $3.5 billion in financing to develop four 
domestic direct air capture centers. The Danish energy department also purchased 1.1 million tons 
of carbon removal type carbon credits and established the fund for negative CO2 emissions 
(NECCS fund) for three carbon removal projects. These countries are promoting carbon removal 
projects and negative carbon credits through policies, market mechanisms and technological 
innovations. 
 
The carbon offset mechanism comes from the Kyoto protocol in 1997. One of its important 
functions is to develop a carbon trading system. Under this system, there are three different carbon 
trading mechanisms, the Emissions Trading System (ETS) and Joint Implementation (JI) for 
developed countries, and the Clean Development Mechanism (CDM) for developing countries. 
These three carbon trading mechanisms form the prototype of the carbon trading system. Among 
them, ETS measures a country's total emissions based on its GDP emissions and determines the 
quota cap. The government of this country will distribute quotas in different forms (such as free 
allocation, auction, etc.) in the primary market. Enterprises that emit more than the quota need to 
purchase carbon quotas or carbon credits (from CDM projects in developing countries) equal to 
the excess amount in the secondary market, while enterprises that emit less than the quota can sell 
the remaining carbon quotas in the secondary market. CDM carbon credits are generally credits 
obtained from emission reduction projects implemented in developing countries, which can be 
bought and sold in the primary and secondary markets to offset carbon emissions (UNFCCC). 
 
Since the launch of the global carbon market, the European Union's Emission Trading System (EU 
ETS) has been the world's largest carbon trading system. Other mature systems include New 
Zealand, South Korea, Switzerland, California, Quebec, Canada, and the Regional Greenhouse 
Gas Initiative in several states in the eastern United States. Mexico's pilot ETS was launched in 
January 2020 (S.Verde et al., 2021). Since 2013, China's ETS pilot has included eight regions, 
namely Beijing, Shanghai, Tianjin, Shenzhen, Chongqing, Guangdong, Hubei, Fujian. And launch 
a national emission trading system in 2021 (B. Shi et al., 2021; X, Long, L. Goulder, 2023). 
Moreover, carbon trading markets in Colombia and Ukraine are being developed, and carbon 
trading markets in Brazil, Chile, Indonesia, Pakistan, Thailand, Turkey and Vietnam are under 
consideration (S.Verde et al., 2021). It can be seen that the global carbon market is constantly 
developing and becoming increasingly important in addressing climate change. 



 
However, despite the continuous expansion of carbon markets in size and influence, they still face 
many challenges. For example, the risk of carbon leakage has always been a core issue in carbon 
markets, especially in industries such as agriculture and transportation. Since these industries are 
often not prioritized in national climate policies, their carbon leakage risk is even higher than that 
of energy-intensive industries (F. Freund et al., 2023). The volatility of carbon credit prices is also 
a major challenge for the carbon market (Z Feng et al., 2011; B. Ibrahim et al., 2016; A. Aslan et 
al., 2022). This volatility comes from factors such as policy impact and supply and demand 
relationship. Q. Dong, Y. Zhao et al. (2024) discussed in their study of China's Risk spillover 
between carbon markets and stock markets that there is a risk correlation and spillover effect 
between carbon markets and stock markets. The spillover effect between China's carbon market 
and stock market is significant, but uneven, and very sensitive to extreme events. The carbon 
market mainly plays the role of a net receiver in information flow, rather than outputting to the 
stock market. 
 
On the other hand, carbon credits also play an important role in the carbon market. B.Shi, L.Wu et 
al. (2021) discussed the CDM project and mentioned that it provides huge environmental benefits 
to developing countries, making consumption and production patterns more environmentally 
friendly, and developed countries can also meet emission reduction standards at a lower cost. It is 
crucial for many countries to deploy renewable energy industries, and it promotes the development 
of energy technology, enabling more countries to widely use energy technology and clean energy. 
However, the effectiveness and methodology of these carbon credit projects have also been 
questioned by many parties (A.Costa et al., 2013; A. Michaelowa, 2009). 
 
Carbon-negative credits are directly remove and store carbon dioxide from the atmosphere through 
artificial and/or technical methods, such as afforestation, carbon capture and storage (CCS), soil 
carbon storage, etc. Unlike traditional carbon credits, the purpose of carbon-negative credits is to 
reduce carbon already in the atmosphere. According to the report of the Intergovernmental Panel 
on Climate Change (IPCC), carbon removal technology is an indispensable part to achieve the 1.5-
degree Celsius temperature control target. Carbon absorption type carbon credits provide 
economic incentives for these technologies and promote the development and application of 
negative carbon technologies. In addition, many climate scientists point out that relying solely on 
emission reduction measures is not enough to achieve the net zero target, so carbon absorption 
type carbon credits are needed to make up for emissions that cannot be eliminated. Common 
negative carbon technologies currently include A/R forestation, Soil Management, carbon capture 
and storage (CCS). C. Hepburn, E. Adlen et al. (2019) studied Economically effective projects for 
utilizing and removing CO2. The study included 10 different types of negative carbon projects. 
The authors predicted the carbon storage and utilization potential and different economic benefits 
of these 10 different negative carbon projects. The results are shown in the following table. 
 
We can see that, except for forest projects and land management projects, other negative carbon 
projects are rarely used in the carbon market, and these projects have a lot of carbon storage and 
utilization potential, as well as economic benefits, which also shows that we have not developed 
enough carbon credits. 
 



Table 17.  10 different carbon-negative projects 
 
 
Although negative carbon projects have significant carbon storage potential and economic benefits, 
their application in the global carbon market is still limited. The differences in the acceptance of 
negative carbon credits in different countries also show the differences in the implementation of 
carbon credit mechanisms in various places. For example, in China's national carbon trading 
market, there are only A/R forestation type negative carbon credits, while in Europe and the United 
States, there are various types of negative carbon credits, but they are also dominated by forest and 
land management projects, and most of the carbon credits usually come from non-governmental 
organizations and are traded in the voluntary market. In this diverse carbon market context, the 
price of carbon credits is often affected by multiple factors, and the fluctuation of energy prices is 
an important factor. 
 
The attitudes of carbon trading markets in various countries towards negative carbon credits vary. 
At the same time, the price and volatility of carbon credits in the market are also significantly 
affected by the energy market, especially in different economic cycles. C. Gavard & D. Kirat (2018) 
discussed the relationship between carbon credits and energy prices in detail. Although EUA and 
CER show the same return trend, the price of EUA is mainly affected by demand, such as changes 
in EU emission targets and energy demand. However, CER prices are more affected by energy 
prices. In periods of low economic activity and weak demand, EUA prices are negatively elastic 
to coal and natural gas prices. In economic downturns, fuel prices and EUA prices fluctuate in 
opposite directions. In normal times, EUA prices are positively elastic to coal and natural gas 
prices, and as economic activity increases, fuel prices and EUA prices rise together. Understanding 
the dynamic behaviour of carbon markets has practical significance for investors, policymakers, 
and participants in carbon credits. When making price forecasts and market strategies, 
understanding the dynamic risks of the market can enable investors to better manage risks. 
 
Carbon-negative credits are different from traditional carbon credits because they are not just 
intended to offset existing emissions, but to reduce the amount of carbon in the atmosphere by 
directly removing carbon dioxide from the atmosphere. This carbon removal process is more 
aggressive and aims to reverse carbon emissions that have already been produced, rather than just 
reducing new emissions.  



 

 

2. Literature Review  

 
A study from the IMF shows that carbon pricing can be achieved through carbon taxes or emissions 
trading systems (ETS). Carbon taxes are simple and direct, fixing emission prices by levying taxes 
on each ton of carbon emissions, while ETS determines prices by issuing and trading carbon 
emission permits. Both methods can effectively encourage companies and individuals to reduce 
carbon emissions and provide price signals for clean technology investment. Currently, more than 
60 countries and regions have implemented carbon taxes or ETS, including China and Germany. 
However, despite the increase in the number of pricing mechanisms, the global average carbon 
price is still far below the level required to achieve climate goals. 
 
The price of carbon credits is highly correlated with the price of EUAs (X. Yang, Y. Ye et al., 
2023; C. Gavard, D. Kirat, 2020). In the first phase of the EU Emission Trading System, carbon 
credits can be used to offset carbon emissions and traded on the market, but starting from the 
second phase, the offset amount of carbon credits cannot exceed 13.4% of the total quota. In many 
CDM projects of the UNFCCC, the author observed that some carbon credits will be contracted 
and priced with buyers at the beginning of the CDM project. Or sellers can also set their own prices 
based on costs and supply and demand. T. Kanamura (2016) explored the impact of carbon swaps 
and energy prices on the volatility and price correlation between the EU Emission Trading 
System’s emission union allowances (EUA) and the Clean Development Mechanism's emission 
reduction credits (CERs). When the price of EUA rises, the price correlation between EUA and 
CER is mainly driven by swaps between the two. In periods of financial instability and falling 
EUA prices, price correlations are more affected by falling energy prices. The study also found 
that carbon market volatility is asymmetric under different price volatility conditions. 
 
Previous studies have confirmed that EUA prices are related to many financial markets. Among 
them, some empirical studies show that EUA is correlated with the stock market. R. Jiménez-
Rodríguez (2019) explained that increased economic activity will increase energy demand, thereby 
increasing carbon emissions and pushing up EUA prices. Improved stock market conditions 
usually indicate a good economy environment, which leads to an increase in EUA prices.  
 
But overall, stock markets in different regions are geographically specific. C. Luo and D. Wu 
(2016) studied the dynamic correlation between European carbon emission permits, crude oil, and 
the stock markets of China, the United States and Europe. The results show that the correlation 
between European carbon spot prices and the US and European stock markets is high and volatile, 
while the correlation with the Chinese stock market is low. A. Dutta, E. Bouri et al. (2018) showed 
that EUA price fluctuations have a positive impact on clean energy stock returns, but are generally 
not statistically significant. At the same time, it was found that there is a significant volatility 
relationship between EUA and the European Clean Energy Index, while the US market does not 
show a similar correlation, indicating that volatility shocks are geographically specific. 
 



In addition, previous researchers have also discussed the connection between EUA and clean 
energy company stock prices. U. Oberndorfer (2009) concluded that changes in the price of EU 
emission allowances (EUA) have a significant positive correlation with the stock prices of major 
European power companies, and the correlation is asymmetric. Y. Tian, A. Akimov et al. (2016) 
studied the impact of (EUA) on the stock returns and volatility of European power companies. It 
is pointed out that the impact of EAU returns on power company stocks depends on carbon 
emission intensity, that is, carbon-intensive companies (non-clean energy companies) are 
negatively correlated with EUA returns, while low-carbon emission companies (clean energy 
companies) are positively correlated during non-shock periods. 
 
Meanwhile, the price of EUA is closely related to other types of financial markets. M. Gronwald 
et al. (2011) studied the relationship between the returns of EU emission permit (EUA) futures and 
the returns of commodities, stocks and energy indices, and the results showed that there was a 
significant relationship between EUA returns and the returns of other assets. X. Tan, K. Sirichand 
et al. (2020) analyzed the information connectivity between carbon markets, energy markets and 
traditional financial markets, and showed that the overall returns of these three markets were highly 
correlated and volatile, among which oil prices and carbon markets were closely related to stock 
and non-energy commodity markets, while the correlation with bond markets was weaker. Q. Jiang 
and X.Ma (2021) showed that the volatility of the fossil energy market would affect the carbon 
market and then be transmitted to the clean energy market, while the volatility of the clean energy 
market would also affect the carbon market, and the volatility would be transmitted to the fossil 
energy market. 
 
Not only that, but EUA has experienced different policy change periods: from 2005 to 2007 was 
the first phase of EU ETS, mainly used to test and improve the mechanism; From 2008 to 2012, 
the second stage, EU ETS coverage expanded from power generation and energy-intensive 
enterprises to the aviation industry; from 2013 to 2020, the third stage, EU ETS covers more 
industries, with a coverage rate of about 45% of EU greenhouse gas emissions, and the allocation 
mode of EUA gradually shifted from free allocation to auction, and the emission limit was reduced 
by 1.74% each year; the fourth stage is from 2021 to 2030, further expanding the auction EUA 
ratio, and reducing the emission limit by 2.2% each year. In general, the policy tends to tighten. Y. 
Zhang, Z. Liu et al. (2017) showed that carbon prices were strongly correlated with financial 
indices in the early stage, but the correlation weakened afterwards. P. Dai, X. Xiong et al. (2022) 
studied and analyzed the impact of economic policy uncertainty in Europe and the world on the 
volatility of the European carbon market. The study found that both types of policy uncertainty 
will lead to greater long-term volatility in the returns of the European carbon spot market. Among 
them, under the same policy change range, global economic policy uncertainty has a greater impact 
on the carbon market. 
 
Even though EUA is closely related to various financial markets, it seems that the fluctuations and 
changes in the carbon market are more dependent on the supply and demand of carbon emission 
permits rather than the direct impact of macroeconomic conditions. J. Chevallier (2009) found that 
the yield of US Treasury bonds and the return rate of global commodity markets have little 
predictive effect on the carbon futures market. This finding shows that the carbon market is mainly 
affected by its own supply and demand relationship and is not directly affected by macroeconomic 
variables (such as interest rates and economic cycles) like other commodity markets. 



 
In addition, due to the tightening of policies, the correlation between EUA and financial markets 
has weakened, and it is not directly affected by macroeconomic conditions. Many scholars have 
also studied the investment performance of EUA. A. Afonin, D. Bredin et al. (2018) found that 
EU emission permit futures were less attractive as independent investments in the first, second and 
third stages. Q. Jiang and X.Ma (2021) proved that the carbon market is a "bridge" for the 
transmission of fluctuations between the fossil energy market and the clean energy market, and 
empirically showed that investing in oil is the lowest cost hedging tool. X. Tan, K. Sirichand et al. 
(2020) proved that EUA is more suitable as a diversified asset for investment portfolios than oil 
because of its low correlation with financial assets. Y. Zhang, Z. Liu et al. (2017) also pointed out 
that given the relative independence of carbon assets, the study pointed out that incorporating them 
into the investment portfolio can help diversify risks. 
 
Previous quantitative research literature mainly focuses on the correlation between carbon market 
and other markets, spillover effects, hedging strategies and forecasting models, etc. Moreover, a 
large number of carbon market prices are quantitatively studied using EUA prices or EUA futures 
prices and their rates of return. Quantitative research on CER is rare in quantitative research on 
carbon markets, and quantitative research on other carbon credits in voluntary markets has not 
been seen so far. The author observes that the monthly price of carbon-negative credit of Nasdaq-
Puro.earth can be used to study the correlation and spillover between negative carbon credits in 
the voluntary market and other markets. However, due to the price frequency limitation of this 
carbon credit index, we do not consider the research on hedging strategies and forecasting, but 
focus on the correlation and spillover effect between carbon-negative credit and different markets. 
 
The concept of spillover effect was first proposed by SA Ross (1989), who pointed out in his study 
that the flow of information between markets is the key factor causing volatility changes. The core 
idea of this effect is that the connection between different markets is not isolated. however, it has 
a significant mutual influence through information transmission and interaction. For example, 
when one market fluctuates, other markets may be affected by information transmission, thus 
showing changes in volatility: price fluctuations in the stock market may affect investor behavior 
in the bond market. This cross-market information flow reflects the correlation between markets. 
Therefore, changes in market volatility are not just a phenomenon within the market, but can also 
reveal the relationship between markets through information flow. 
 
Previous studies have used different quantitative methods to study spillover effects, such as VAR, 
GARCH, Copula and other methods (S. Zeng, J. Jia et al., 2020). X. Gong, R. Shi et al. (2021) 
used the TVP-VAR-SV model to study the spillover effects between the carbon market and the 
fossil energy market, then concluded that there is a significant spillover effect between the carbon 
market and the fossil energy market, and the intensity and direction are time-varying and 
asymmetric. Y. Wang and Z. Guo (2018) used the KPPS framework (the generalized VAR model 
proposed by Koop, Pesaran and Shin) to explore the time-varying spillover effects between the 
carbon market and the energy market, then drew the following main conclusions: 1. The spillover 
effects between the carbon market and the energy market are asymmetric in the yield and volatility 
series. 2. The intensity and direction of the spillover effect vary over time and are significantly 
affected by policy changes or major events. 3. In the energy market, the WTI crude oil market has 
the strongest spillover effect on the entire system. 4. The natural gas market also has a significant 



spillover effect on the carbon market. Q. Zhang and R. Wei (2024) used the Quantile VAR method 
to explore the volatility spillover effect between carbon emission reduction attention and financial 
market pressure. It was concluded that there is a close two-way spillover effect between carbon 
emission reduction attention and financial market pressure. S. Qiao, Y. Dang et al. (2023) used the 
TVP-VAR-SV model to explore the dynamic spillover effect between the carbon market, fossil 
energy market and electricity market. The results showed that there is a significant spillover effect 
between the carbon market, fossil energy market and electricity market. Moreover, the impact of 
the carbon market on the electricity market is more significant, especially in promoting the 
optimization of energy structure and emission reduction targets in the electricity market. 
 
J. Chevallier (2011) studied the dynamic relationship between oil prices, natural gas prices and 
carbon prices by using the MGARCH model (including BEKK, CCC and DCC - MGARCH). The 
study found that there are significant self-volatility effects and cross-market volatility spillover 
effects in the oil, natural gas and carbon markets, and the volatility has strong persistence. M. 
Balcilar, R. Demirer et al. (2016) used the Markov Regime-Switching DCC-GARCH model to 
evaluate the risk transmission mechanism of the energy market to the carbon market and analyze 
the hedging performance of the carbon spot and futures markets. The results show that the spot 
and futures branches of the carbon market show volatility hedging effectiveness under different 
market conditions. X. Song, D. Wang et al. (2022) used the BEKK-MGARCH model to study the 
linkage between China's carbon trading market (represented by Hubei and Shenzhen) and the 
energy market (represented by the coal market). It is concluded that China's carbon market is easy 
to regulate, has higher liquidity and less volatility. S. Zeng, J. Jia et al. (2021) used the BEKK-
GARCH model to study the dynamic volatility spillover effect between the EUA and CER markets. 
It was concluded that the volatility spillover effect of the EUA market on the CER market is more 
significant, and there is an asymmetric volatility spillover effect between the two markets (the 
volatility of the EUA market is more easily transmitted to the CER market).  
 
B. Zhu, X. Zhou et al. (2020) used the Copula-CoES model to study the risk spillover effects 
between major carbon trading markets in China, and found significant risk spillover effects 
between the Guangdong and Shenzhen markets, as well as high-risk characteristics in Chongqing, 
Tianjin and Shenzhen. N. Yuan and L. Yang (2020) used the GAS–DCS–Copula model to study 
the risk spillover mechanism between financial market uncertainty (stock market and crude oil 
market) and the carbon market. The results showed that the transmission of financial market 
uncertainty to carbon market risk is more intense under extreme market conditions. 
 
In quantitative studies on spillover effects, the BEKK-GARCH model is often used due to its 
capability to capture the volatility spillover effects between markets. In multivariate scenarios, it 
is particularly advantageous for modeling asymmetry and complex linkages between markets. 
Compared to VAR analysis, which typically requires a large sample size to ensure robust 
parameter estimation, the BEKK-GARCH model has been shown to perform reliably in 
analyzing volatility and spillover effects even with smaller sample sizes. While Copula models 
are powerful for modeling static dependence structures, they may face challenges in naturally 
incorporating dynamic modeling over time and in directly analyzing time-varying linkages 
between markets, areas where BEKK-GARCH models demonstrate strength. Additionally, 
although DCC-GARCH models are effective in capturing dynamic correlations, certain studies 



(e.g., Y. Huang, W. Su et al., 2010) suggest that BEKK-GARCH models may exhibit superior 
fitting performance under specific conditions. 
 

3. Methodology and Data  

 
3.1 Data and data processing 
 

1) Data 
 

This article collects data from nine markets. For simplicity, the author uniformly codes 
different markets, which are: CORC (CORC Biochar Price Index), OMXG (NASDAQ 
OMX Green Economy Index), MXAP (MSCI AC Asia Pacific Index), MXEU (MSCI 
Europe Index), MXNA (MSCI North America Index), SPAG (S&P GSCI Agriculture 
Index), SPEN (S&P GSCI Energy Index), SPPM (S&P GSCI Precious Metals Index), 
EUAF (EUA futures). The price of CORC is publicly available on Puro.earth and 
NASDAQ (The CORC price index is the only carbon-negative credit index existing in the 
market currently). The price of Nature based carbon credit and EUA futures traded in the 
voluntary market is publicly available on carboncredits.com (After verification, the data of 
carboncredits.com comes from tradingview.com, and the data from tradingview.com 
comes from Intercontinental Exchange, ICE). Other data comes from S&P Global. Among 
them, MXAP, MXEU and MXNA represent the stock indices of Asia Pacific, Europe and 
North America respectively. 

 
Then the author determined the time period (01/03/2020-30/01/2024), since March 2020 is 
the starting point of CORC carbon credits, until January 2024 during the preparation of our 
paper. The author used linear interpolation to fill the missing values of these daily average 
data. Since CORC is monthly data, we converted all other data into monthly data (monthly 
average). The obtained data is statistically descriptive values for each variable as follows: 

 
Variables Month Mean Median Maximum Minimum Sd. Skewness Kurtosis 

CORC 47 104.3713 111.32 176.55 19.96 35.96162 -0.37291 -0.35386 
OMXG 47 2756.036 2775.76 3550.32 1648.36 427.0406 -0.85154 0.65759 
MXAP 47 173.7191 165.09 215.12 138.34 21.20434 0.380058 -1.02128 
MXEU 47 1816.45 1866.04 2086.41 1360.6 197.9363 -0.64661 -0.45574 
MXNA 47 4028.3 4091.73 4767.03 2645.51 518.0816 -0.89664 0.312689 
SPAG 47 410.6021 418.6 576.88 260.47 78.15729 -0.24719 -0.13078 
SPEN 47 244.3872 252.65 404.73 86.44 76.97363 -0.17534 -0.51741 
SPPM 47 2417.292 2421.06 2657.1 2036.11 142.987 -0.41272 -0.25456 
EUAF 47 66.24468 77.67 99.44 21.22 26.42604 -0.46564 -1.31032 

Table 18.  Descriptive Data 
 

The data is visualized, and the moving average and outliers are added as auxiliary lines to 
obtain the following visualization graph: 



 
 

Figure 23: Original price and moving average 
Moving averages smooth short-term fluctuations and help to show the long-term trend of 
the time series. From the data, we can see that CORC and EUAF have long-term and similar 
trend changes. The stock market in Europe, Asia Pacific and North America shows similar 
trend changes, but Europe and North America are more stable than Asia Pacific. 
Agriculture and energy also show similar trend changes. 

 
 

2) Stationarity test 



 
Stationarity means that the statistical properties of the data (such as mean and variance) 
remain constant over time. We use the Enhanced Dickey-Fuller (ADF) test to determine 
whether the time series is stationary. The null hypothesis of the ADF test is that there is a 
unit root in the data, that is, the data is non-stationary. The stationarity of the data can be 
determined by calculating the test statistic and comparing it with the critical values of 
different confidence levels (10%, 5%, 1%). If the test result rejects the null hypothesis, it 
indicates that the data is stationary, which means that the time series has stable and time-
invariant characteristics. We perform stationarity tests on 9 different markets and the 
results are as follows: 
 

Stationarity Test 
ADF 

Statistic p-value 
1% Critical 

Value 
5% Critical 

Value 
10% Critical 

Value 
CORC -2.1565 0.2224 -3.5886 -2.9299 -2.6032 
OMXG -2.7953 0.0589 -3.5813 -2.9268 -2.6015 

MXAP -2.7631 0.0637 -3.6104 -2.9391 -2.6081 
MXEU -2.2603 0.1851 -3.5813 -2.9268 -2.6015 

MXNA -2.5053 0.1142 -3.5813 -2.9268 -2.6015 
SPAG -2.1264 0.2340 -3.5848 -2.9283 -2.6023 

SPEN -2.3107 0.1685 -3.5848 -2.9283 -2.6023 
SPPM -2.7541 0.0651 -3.5813 -2.9268 -2.6015 

EUAF -1.7501 0.4055 -3.5813 -2.9268 -2.6015 
Table 19.  Stationarity Test Results 

 
All p-values are greater than 0.05, which means that at the 5% significance level, we cannot 
reject the null hypothesis that the series is not stationary, and the ADF statistic is not less 
than the corresponding critical value at any significance level.  
 
3) First-order differences 

 
Therefore, these series need further difference processing to achieve stationarity. Thus, we 
apply first-order differences to each column in the dataset and then check stationarity again: 

 
Stationarity Test After 

Differencing 
ADF 

Statistic p-value 1% Critical Value 5% Critical Value 10% Critical Value 

CORC -8.7423 2.99E-14 -3.5886 -2.9299 -2.6032 
OMXG -4.8339 4.68E-05 -3.5886 -2.9299 -2.6032 

MXAP -4.4956 0.0002 -3.5848 -2.9283 -2.6023 
MXEU -5.2031 8.66E-06 -3.5848 -2.9283 -2.6023 

MXNA -5.4564 2.58E-06 -3.5848 -2.9283 -2.6023 
SPAG -4.7682 6.25E-05 -3.5848 -2.9283 -2.6023 

SPEN -5.4967 2.12E-06 -3.5848 -2.9283 -2.6023 
SPPM -5.6466 1.01E-06 -3.5848 -2.9283 -2.6023 

EUAF -6.9431 1.01E-09 -3.5848 -2.9283 -2.6023 
Table 20.  First-Order Differences 



All p values are less than 0.05, indicating that at the 5% significance level, we can reject 
the null hypothesis that the series is stationary. 
 
4) Multicollinearity test  

 
In addition, we also need to perform a multicollinearity test (Variance Inflation Factor, VIF) 
to assess the degree of correlation between independent variables. Multicollinearity refers 
to the situation where two or more independent variables are highly correlated, which will 
lead to unstable regression coefficients in the regression model and reduce the explanatory 
power of the model (Hoerl, A.E. and Kennard, R.W. , 1970). 

 
Variable CORC OMXG MXAP MXEU MXNA SPAG SPEN SPPM EUAF 

VIF Before 
Differencing 35.61595 1571.744 1616.297 2962.975 3070.154 326.4696 196.6809 357.9563 151.2972 

VIF After 
Differencing 1.145294 5.610269 3.452025 5.065091 6.704324 1.545159 1.31471 1.546492 1.273128 

Table 21.  Variance Inflation Factor before and after differencing 
 

In the original data, the VIF values of all variables are very high, especially the VIF values 
of MXEU and MXNA are close to and exceed 3000 respectively, which indicates that there 
is a very high interdependence between the variables. After differentiation, the VIF values 
of all variables are significantly reduced, and all values are less than 10. 
 

3.2 Methodology 
 
1) Vector Autoregression (VAR) model 
 
The Vector Autoregression (VAR) model is an extension of the univariate autoregression 
(AR) model and is used to analyse the relationship between multiple variables. In the VAR 
model, all major economic variables are considered endogenous variables. And the lagged 
values (i.e., the values at previous time points) of all endogenous variables are used to 
establish the equation. The VAR model was first proposed by Christopher A. Sims in 1980, 
who suggested that this model could be used for forecasting, evaluating economic models, 
and assessing the impact of different policies. After years of research and development, the 
VAR model has become a very important model in time series models. Many researchers 
have also developed VAR-GARCH models based on the VAR model (Ling and McAleer, 
2003). Many researchers have also used VAR-based models to study the carbon market (P. 
Gargallo, L. Lample et al., 2021; S. Zeng, J. Jia et al., 2021).  
 
The basic mathematical expression of the var model is as follow: 
 

𝑅! = 𝐶 + 𝐴"𝑅!#" + 𝐴$𝑅!#$+. . . . . . +𝐴%𝑅!#% + 𝑒! (1) 
𝑒!|𝐼!#"~𝑁(0, 𝐻!)      (2) 

 
In the formula (1), 𝑅!represents a vector of variables at time t ; C representing the intercept 
term in the model ; from 𝐴" to 𝐴% are coefficient matrices associated with each lag ; from 
𝑅!#" to 𝑅!#% are measuring the  influence of the variable's own values from the past k 



periods ; 𝑒! is the residual at time t. In the formula (2), the same as the formula (1), 𝑒! is 
the residual at time t ; 𝐼!#"means the market information available at the time t-1. 
 
2) BEKK-GARCH model 
 
Engle and Kroner (1995) proposed the BEKK(p,q)-GARCH model, The BEKK-GARCH 
(Baba, Engle, Kraft, and Kroner - Generalized Autoregressive Conditional 
Heteroskedasticity) model is a multivariate extension of the univariate GARCH model. It 
is specifically designed to capture the dynamic relationships between the variances and 
covariances of multiple time series. Y. Chen, B. Zheng et al. (2020) emphasized that it can 
ensure that the variance-covariance matrix is always positive without any restrictions on 
the parameters, which helps to reduce the number of estimated parameters and makes 
estimation more convenient. 
 
The basic mathematical expression of the var model is as follow: 
 

𝑒&,! = 𝜈&,!ℎ&,! , 𝜈&,!~𝑁(0,1)                                  (1) 
ℎ&,! = 𝑐& + 𝛼&𝑒&,!#"$ + 𝛽&ℎ&,!#"                     (2) 
𝐻! = 𝐶(𝐶 + 𝐴(𝑒!#"𝑒!#"( 𝐴 + 𝐵(𝐻!#"𝐵        (3) 

 
In the formula (1), 𝑒&,!represents the residual of i at time t ; 𝜈&,! means a standard normally 
distributed random variable ; ℎ&,! is the volatility of i at time t. In the formula (2), 𝑐& is a 
constant term ; 𝛼& represents the coefficient of the previous residual square term ; 𝛽& 	is the 
coefficient representing the lagged volatility term. The formula (3) demonstrates the 
interrelationships between multiple assets, the matrixes for the 9 different markets’ inputs 
of Data is as follow: 
 

𝐻! =

⎝

⎜
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The matrix H is a variance-covariance matrix. The diagonal elements represent the 
conditional variance of each market (i.e., the volatility of the market itself). The off-
diagonal elements (ℎ&+(-+)) represent the conditional covariance between market i and 
market j, reflecting the volatility transmission effect between markets. The diagonal lines 
represent the volatility of each of the nine markets. The C matrix is a lower triangular 
matrix that represents the constant terms of the model. The ARCH coefficient matrix A 
represents the conditional volatility transmission effect between market i and market j. The 
diagonal elements represent the ARCH effect of market i (the impact of the market's own 
volatility on itself); the off-diagonal elements represent the volatility transmission effect 
between market i and market j. The GARCH coefficient matrix B represents the conditional 
volatility persistence between market i and market j. The diagonal elements represent the 
persistence of market i’s own volatility (GARCH effect), while the off-diagonal elements 
represent the spillover effect of market i’s volatility on market j.  
 
3) Impulse Response Function (IRF) 
 
The covariance matrix of the random shock term V is Σ, let E(vtv′t)=Σv, so that the shocks 
are simultaneously correlated. The core of the formula is to use the covariance matrix to 
capture the correlation between variables while standardizing to unit shock for easy 
understanding. This formula is particularly suitable for multivariate time series where 
shock terms are correlated. The generalized impulse response function of Xi to a unit (one 
standard deviation) shock in Xj is:  
 

𝛹&+,/ = (𝜎&&)#"/$(𝑒+1F 𝑒&
2
) 

 
where σii is the ith diagonal element of Σv, ei is a selection vector with the i th element equal 
to one and all other elements equal to zero, and h is the horizon (B. Ewing, J. Kruse et al., 
2007). 
 

4. Empirical results and analysis 

 
The market correlation matrix reveals the interconnectedness between different markets, with its 
elements representing the strength of these relationships. Positive values indicate positive 
correlations, while negative values signify negative correlations. The correlation between the 
Negative Carbon Credit market (CORC) and OMXG (NASDAQ OMX Green Economy Index), 
MXAP (Asia-Pacific stock market), MXEU (European stock market), and MXNA (North 



American stock market) is negative or close to zero (e.g., -0.222279 and -0.059559). This suggests 
that the CORC market has a weak or even inverse relationship with these stock markets, indicating 
that the fluctuations in the CORC market are not directly driven by stock market dynamics but 
may instead be influenced by other market factors or internal characteristics. 
 

Results for correlation matrix of residuals: 
 

Correlation matrix of residuals 

 CORC OMXG MXAP MXEU MXNA SPAG SPEN SPPM EUAF 

CORC 1 -0.222279 -0.041991 -0.095959 -0.011344 -0.479072 -0.277366 -0.001769 -0.107398 

OMXG -0.222279 1 0.79594 0.684977 0.839639 0.041817 0.277886 0.512037 0.30631 

MXAP -0.041991 0.79594 1 0.886249 0.824894 -0.210305 0.27446 0.394827 0.574767 

MXEU -0.095959 0.684977 0.886249 1 0.886551 -0.25524 0.145873 0.494696 0.822208 

MXNA -0.011344 0.839639 0.824894 0.886551 1 -0.187227 0.15014 0.517386 0.604785 

SPAG -0.479072 0.041817 -0.210305 -0.25524 -0.187227 1 0.701327 0.369522 -0.115244 

SPEN -0.277366 0.277886 0.27446 0.145873 0.15014 0.701327 1 0.476831 0.051993 

SPPM -0.001769 0.512037 0.394827 0.494696 0.517386 0.369522 0.476831 1 0.401251 

EUAF -0.107398 0.30631 0.574767 0.822208 0.604785 -0.115244 0.051993 0.401251 1 
Table 22.  Results For Correlation Matrix Of Residuals 

 
The correlation between CORC and the argiculture market (SPAG) is 0.041817, which is relatively 
low, showing that the energy market has a limited direct impact on CORC. However, indirect 
influences, such as cost transmission or policy linkages, may exist. The correlation between CORC 
and the European Union Allowance Futures market (EUAF) is 0.30631, which is positive and the 
highest among all markets analyzed, indicating a certain level of linkage between the negative 
carbon credit market and the EU carbon market. This connection may be driven by similar policy 
mechanisms or pricing structures. Additionally, the correlation between CORC and the agricultural 
market (SPAG) is -0.479072, indicating a significant negative correlation, suggesting that their 
relationship is weak and potentially inverse. 



An analysis of the Impulse Response Function (IRF) results shows that a shock from the energy 
market (SPEN) generates a significant negative spillover effect on CORC in the 2nd and 3rd 
periods following the shock. The response curve deviates negatively from zero and exceeds the 
confidence interval, indicating that price fluctuations in the energy market suppress the 
performance of the negative carbon credit market in the short term. Conversely, a shock from the 
EUAF market on CORC results in a significant positive spillover effect during the initial periods, 
as evidenced by the response curve positively deviating from zero. Furthermore, the spillover 
effect from EUAF to CORC is relatively symmetric, with positive and negative shocks exhibiting 
similar magnitudes and durations, suggesting that the EU carbon market has a stable and balanced 
impact on CORC. In contrast, most other markets, such as OMXG (Green Economy Index), 
MXAP, and MXEU, show no significant spillover effects on CORC, possibly indicating weak 
connections or a lack of effective volatility transmission between these markets and the CORC 
market. 

Figure 24: Results of Impulse Response Function (IRF) 



 
Figure 25: Results of FEVD 

 
The FEVD results highlight the unique dynamics of the Negative Carbon Credit market (CORC) 
in relation to other markets. CORC's volatility is predominantly self-driven, with approximately 
85%-90% of its forecast error variance being attributed to its own movements even over longer 
forecast horizons. This suggests that CORC operates with a high degree of independence, with 
limited direct influence from external markets. However, a notable exception is its relationship 
with the European Union Allowance Futures market (EUAF). Over time, EUAF contributes up to 
10% to the variance in CORC, reflecting an emerging linkage likely driven by shared regulatory 
frameworks and pricing mechanisms in carbon markets. This relationship indicates that policy 
changes or price shocks in the EU carbon market may increasingly shape the dynamics of the 



CORC market. Conversely, CORC exhibits a limited response to other markets, such as the energy 
market (SPEN) and stock markets (OMXG, MXAP, MXEU, MXNA). The influence of SPEN on 
CORC remains minimal, with negligible contributions even in longer time horizons, suggesting 
that energy price volatility does not directly spill over into the CORC market. Similarly, traditional 
stock markets show no significant explanatory power for CORC's variance, indicating a lack of 
integration between carbon credits and general equity market movements. 
 
The spillover analysis reveals key dynamics between the Negative Carbon Credit market (CORC) 
and other markets over time. The results indicate that CORC’s volatility is predominantly 
influenced by the European Union Allowance Futures market (EUAF) and, to a lesser extent, by 
the energy market (SPEN), while its interaction with other markets, including stock markets, 
remains negligible. Specifically, EUAF exhibits a consistently significant positive spillover effect 
on CORC, particularly at Time 2 and Time 4, suggesting that the EU carbon market plays a crucial 
role in shaping CORC dynamics through shared regulatory mechanisms and aligned price 
movements. Conversely, SPEN demonstrates a negative spillover effect on CORC, with its 
influence peaking at Time 4 and Time 5, reflecting the suppressive impact of energy price 
fluctuations on the negative carbon credit market. On the other hand, CORC also acts as a spillover 
transmitter, particularly affecting EUAF and OMXG (NASDAQ Green Economy Index). CORC 
exerts a positive spillover on EUAF during Time 4 and Time 6, indicating a bidirectional 
relationship between these two carbon markets, possibly driven by investor sentiment and 
interconnected policy changes. However, CORC’s spillover to OMXG is negative at Time 3 and 
Time 5, highlighting that volatility in the negative carbon credit market may dampen investment 
dynamics in the green economy index. Across the analyzed time periods, CORC remains relatively 
insulated from traditional stock markets (MXAP, MXEU, MXNA), further underscoring its 
specialized and independent nature within the broader market system.  
 
The results show that the CORC market is highly independent, which is in contrast to previous 
research on the EUA. For example, X. Tan, K. Sirichand et al. (2020) found significant co-
movement between the EUA and energy and financial markets. This difference may be due to the 
stage characteristics of the CORC market as an emerging market. The negative spillover effect of 
the energy market (SPEN) on CORCs is in stark contrast to the positive correlation between the 
energy market and the EUA market found in previous studies (e.g. Gronwald et al., 2011). This 
difference may reflect the structural differences in the CORC market in the face of energy price 
signals, which may be related to its focus on carbon removal rather than emission quota trading. 
 



 

 

 



 
 
 

 

 
 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 
Figure 26: Results of BEKK-GARCH 

 
CORC has the most significant positive spillover effect on the Asia-Pacific stock market (MXAP). 
In Time 2–6 and Time 8–9, its spillover values are as high as 0.18–0.20, the highest among all 
markets, but the overall trend has slightly decreased over time. This shows that there is a strong 
linkage between the volatility of carbon-negative credit prices and the capital markets in the Asia-
Pacific region, which may be driven by the rapid development of green policies in the region or 
investors' increasing attention to ESG tools, such as China's "carbon peak and carbon neutrality" 
policy goals. In contrast, the spillover effect of European stock markets (MXEU) and North 
American stock markets (MXNA) with CORC is relatively weak, with average values of 0.045 
and 0.050, respectively, and a maximum value of no more than 0.07. 
 
In the commodity market, the coupling between agricultural products (SPAG) and carbon-negative 
credits is the most obvious, with an average spillover effect of 0.079, a maximum value of 0.11, 
and an upward trend, indicating that the relationship between land use, carbon sink value and 
agricultural product fluctuations is becoming increasingly close. The energy market (SPEN) 
experienced a strong negative shock (-0.11) at some time points (such as Time 3), but the overall 
trend was not significant, and the system linkage with the energy market was still unstable. The 
precious metals market (SPPM) has the weakest linkage with CORC among all markets, with an 
average spillover value of -0.040, which is on a downward trend. This reflects the essential 
differences between the two in terms of financial structure and market participant composition. 
 
The spillover relationship between CORC and the EU carbon market (EUAF) shows structural 
fluctuations and a downward trend. Although there is a significant positive spillover (maximum 
value 0.10) in the medium term (Time 5–9). This shows that the interaction between the two carbon 
markets is moving towards decoupling, which may reflect the fundamental differences in policy 
logic, participating entities and credit types between voluntary markets (such as CORC) and 
compliant markets (such as EU ETS). 
 
In terms of the green finance sector, the spillover effect of CORC on OMXG (Green Economy 
Index) shows a change process from negative to positive. It was -0.10 at Time 2, and rose to +0.10 
at Time 10, showing an upward trend. This shows that as green industry investment tools become 



increasingly diversified, carbon negative credit price fluctuations are gradually accepted by the 
market and internalized as the risk premium of green financial assets. 

 

5. Conclusion 

 
The analysis of the Negative Carbon Credit market (CORC) reveals its distinctive behavior and 
interactions with other markets. CORC demonstrates a high degree of independence, with its 
volatility primarily self-driven and minimally influenced by external markets such as energy and 
stock markets. Notably, its correlation with the European Union Allowance Futures market (EUAF) 
is the strongest among all analyzed markets, reflecting a growing linkage likely shaped by shared 
regulatory frameworks and aligned pricing structures. EUAF consistently exhibits a positive 
spillover effect on CORC, with a stable and symmetric impact, emphasizing the central role of the 
EU carbon market in shaping CORC dynamics. Conversely, the energy market (SPEN) has a 
limited direct impact on CORC, although short-term shocks from SPEN exert a suppressive effect 
on CORC’s performance. The agricultural market (SPAG) shows a negative correlation with 
CORC, indicating a weak and potentially inverse relationship, while traditional stock markets 
(OMXG, MXAP, MXEU, MXNA) exhibit negligible correlations and spillover effects, 
underscoring a lack of integration between carbon credits and general equity markets. 
 
Moreover, the spillover analysis reveals bidirectional relationships, particularly between CORC 
and EUAF, where CORC transmits positive spillovers to EUAF during specific time periods, 
possibly driven by investor sentiment and interconnected policy changes. CORC also exerts a 
negative spillover on OMXG, highlighting its potential to dampen investment dynamics within the 
green economy index. Across all analyzed periods, CORC’s interactions with other markets 
remain limited, further emphasizing its specialized and independent role within the broader 
financial and environmental market systems. These findings underscore the importance of 
regulatory and market mechanisms in driving CORC’s dynamics and highlight the emerging 
interconnections within global carbon markets. Unlike traditional carbon markets such as the 
EUAF, the relative independence of the CORC market suggests that it may serve as an independent 
carbon management tool. This finding is consistent with the policy goal of promoting carbon 
reduction through diversified tools proposed by Verde et al. (2021). 
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